
GPU implementation of epidemiological behaviour
in large social networks

Sairam K M Menon∗§, P K Baruah§, Matija Sosic‡
§Sri Sathya Sai Institute of Higher Learning, Prashanthi Nilayam, India.

‡Faculty of Electrical Engineering and Computing, Zagreb, Croatia.
Email: sairamkmmenon@gmail.com, pkbaruah@sssihl.edu.in, matija.sosic@fer.hr

Abstract—In a social network, epidemic spread could
be a spread of an infection, opinions, trends, fads, diseases
or worm propagation in network. Epidemic spread com-
putation on such huge and ever growing social networks is
incredibly challenging. High-performance computing using
GPUs has become an important tool to solve computa-
tionally intensive problems. This paper presents a GPU
based implementation(GPU OPT) of Susceptible-Infected-
Recovered (SIR) model. GPU OPT performs 1.8x-3.9x
faster than an existing CUDA SIR implementation across
various types of networks studied. CUDA SIR is 10x faster
than FastSIR(a single core CPU implementation) in the
worst and so GPU OPT is effectively about 30x faster
when compared to FastSIR on an average case. This
implementation was tested on social networks of varied
types like Condense Matter Physics collaboration network,
friendship network, who-trust-whom relationship network
and a Email communication network.

Index Terms—Social Networks, SIR, GPU, Epidemio-
logical behaviour, CUDA.

I. INTRODUCTION

A social network is a patterned arrangement
in a society where the actions of individuals
are inter-related in some way or other. But over
time this social structure of a social network
applies to various walks of life. A social network
can exist with different population levels of its
heterogeneous constituents with variant complexity
and interaction levels. This makes social network a
field that compels heavy interdisciplinary academic
interventions at various stages of its study and
analysis. The heterogeneous constituents in its
dynamic nature, i.e. , when active in the social
network could be considered as contagions. Now,
the contagions could be opinions, trends, fads,

∗Student Author

diseases, worm propagation in network and so on to
name a few. But it is quite noticeable that the above
examples involve a diverse phenomenon on different
types of networks. Networks with complicated
dependencies leading to high communication cost,
synchronization problems and load balancing are
issues in the computations cost involved in the
simulations. Therefore, modelling a situation of
social network involves a lot of computation.

Graphics Processor Unit (GPU) is a high
performance computing device that exploits the
data level parallelism. GPU was mainly used only
for display purposes. It has become attractive
for general purpose application because of its
cost-effective approach to accelerate data intensive
and compute intensive application. The GPU
environment is a heterogeneous architecture which
consists of CPU and GPU. Compute intensive
problems like Epidemic simulations for huge social
networks need to use this high computational power
of GPUs. Compute Unified Device Architecture
(CUDA), developed by Nvidia is an architecture
for parallel computation. Developers of software
in CUDA find a lot of functions provided by
the CUDA libraries which makes programming
applications of interest easier. In this work we
attempt to effeciently implement the Susceptible
Infected Recovered (SIR) in the CUDA platform.
In the SIR model, the following represent the three
compartments:

• Susceptible: Consists of host that probably can
get infected.

• Infected: Consists of hosts that are infected and



are potential to infect the neighbouring hosts.
• Recovered: Consists of hosts that are immune

as they have recovered from the infected phase.

To simulate a real life scenario using SIR model,
we need to study large social networks. Processing
huge networks with millions of nodes and edges
would take a lot of time if done sequentially. So we
need to reduce the simulation time by employing
the GPUs. Some of other widely used epidemic
simulations in the study of public health are Epifast
[3], EpiSimdemics [4], InterSim [5].

A social network can be represented as a graph
where the interactions among the host become edges
and the nodes represent the hosts itself. In this study
we try to implement the idea proposed in [1] in
an efficient manner using CUDA. Here we consider
static, non-weighted and undirected social networks.
Parameters that decide the course of the simulations
with a given starting node are:

• The probability of an infected node going to
recovered state (q).

• The probability of a susceptible node getting
infected from another infected node (p).

Also, each node during the simulation can be in
only one of the three states of the SIR model and
so do not consider a case where the state could
be fuzzy. The simulation completes when all the
infected nodes become either recovered or immune.
Some of the contributions of this work are:

• A faster GPU based version of the SIR model.
• A scalable version of the SIR model.
• Study of the epidemiological behaviour on a

wide variety of network data sets.

The rest of the paper is as follows: Methods
section describes the basic idea of the algorithm [1]
that is used in this implementation. Followed by the
section Applications and Results which tabulates the
timings of the implementation on various publically
available social networks [8] . We finally conclude
with discussion of some of the possible extensions
to this work that we wish to do in future.

II. METHODOLOGY

In previously existing algorithm FastSIR
algorithm [2], the time to recover is speedy when
compared to Naive SIR algorithm [2] due to
the employment of probability distribution of the
number of infected nodes. It was noted that FastSIR
does not follow the epidemic dynamics.

The simulation begins after the graph G is loaded
from the input file and after the random generators
are initialised. The input file which represents the
network is stored as an adjacency list in a single
array for ease of access in GPUs. Initially except
the starting node all other nodes are set to the
susceptible state. The start state that is arbitrarily
chosen is in the infected state and the simulation
proceeds with the infected nodes trying to infect
its neighbouring nodes with a given probability p.
Nodes in the infected state tries to recover with
given probability q. The simulation finishes when
all the infected nodes recover and goes to the
recovered state.

In the heart of the algorithm followed is CUDA
SIR [1] algorithm which uses CUDA BFS [6] .
CUDA BFS caters well for SIR simulations as SIR
simulation is a kind of graph traversal but with
certain probabilities during traversal. Initially all the
nodes are divided into equal sized groups which are
assigned to a warp which avoids large number of
threads being ideal. Parallelisation is achieved at the
infection and the recovery stages of the simulation.
In CUDA SIR at end of each step the appropriate
functions are called by the host (CPU). Shared
memory which is faster than the global memory
is employed in the GPU kernel implementations of
GPU OPT. The GPU alternates between the two
phases:

• Single Instruction Single Data (SISD): Here all
the threads execute the same instruction on the
same data in the shared memory.

• Single Instruction Multiple Data (SIMD):
each thread in the same warp executes same
instruction but on different data.

In SISD phase all the threads in a warp loop
sequentially through the assigned nodes. If the cur-



Fig. 1. Timing in secs for 200 runs of Ca-CondMat.txt

TABLE I
TIMINGS FOR 200 SIMULATIONS OF CA-CONDMAT

p p=0.2 p=0.5 p=0.8
q CUDA GPU OPT CUDA GPU OPT CUDA GPU OPT

0.1 7.25 2.64 5.24 1.77 4.52 1.39
0.2 5.05 1.73 3.41 1.28 2.69 1.04
0.3 4.21 1.35 2.78 1.03 2.18 0.87
0.4 3.75 1.13 2.42 0.88 1.93 0.76
0.5 3.49 0.97 2.29 0.78 1.68 0.68
0.6 3.13 0.86 2.06 0.71 1.57 0.62
0.7 2.87 0.77 1.96 0.66 1.51 0.58
0.8 2.63 0.70 1.91 0.61 1.42 0.54
0.9 2.52 0.65 1.86 0.57 1.39 0.51
1.0 2.35 0.60 1.74 0.54 1.37 0.49

rently inspected node is infected, SIMD phase is
applied to its neighbours. When p value is much
smaller than the q value the infection phase stops
even before it infects every node. Whereas, if p is
much larger than the q value then it would be a
waste of time to check that there are no susceptible
neighbours. A specialized function is implemented
to take care of the above mentioned situation in
GPU OPT.

III. APPLICATIONS AND RESULTS

The tests were performed on system with a 64-bit
Westmere processor Xeon Intel Hexa-Core CPU
and Nvidia Tesla M2070 GPU. Matija et al.[1]
show that CUDA SIR achieves a speed of 10x in the
worst case when compared to CPU SIR(FastSIR)
Implementation. This work shows that we achieve
a speed up of 1.8x to 3.9x when compared to
CUDA SIR. Therefore, when compared to FastSIR,
our SIR implementation(GPU OPT) is about 30x
faster in the average case. It was noted that the
performance of the SIR model implementations

TABLE II
TIMINGS IN SECS FOR 200 SIMULATIONS OF LOC-GOWALLA

p p=0.2 p=0.5 p=0.8
q CUDA GPU OPT CUDA GPU OPT CUDA GPU OPT

0.1 29.44 13.84 19.03 9.89 17.21 7.64
0.2 21.86 9.46 12.80 6.81 9.75 5.55
0.3 18.80 7.48 10.92 5.57 7.85 4.58
0.4 15.58 6.29 9.96 4.85 6.88 4.09
0.5 13.74 5.43 9.12 4.42 6.49 3.76
0.6 12.30 4.82 8.56 4.07 6.11 3.53
0.7 11.14 4.27 7.94 3.79 6.05 3.34
0.8 10.19 3.90 7.78 3.54 5.92 3.20
0.9 9.25 3.58 7.05 3.33 5.40 3.12
1.0 8.76 3.34 6.73 3.15 5.14 3.01

Fig. 2. SpeedUp Plot for Ca-CondMat.txt

depends on the type of the network under study.
The following subsections shows the results of the
comparative study of CUDA SIR and GPU OPT
done on various networks.

A. Collaboration Network

Ca-CondMat.txt is a Condense Matter Physics
collaboration network that includes scientific collab-
orations between authors of the papers submitted to
this category. In this network if two authors have
co-authored then they share an undirected edge be-
tween them. It is available in [9]. The timing for the
various p and q values are noted in the Table I and in
the fig 1 . Also the speed up of the implementation
is represented in the fig 2. The timing plot and
the speedup plots clearly shows the performance
achieved by this implementation(GPU OPT).



Fig. 3. Timing Plot for loc-gowalla-edges.txt

Fig. 4. Timing Plot for soc-Epinions1.txt

B. Friendship Network

The file loc-gowalla-edges.txt is a friendship
network which is based on location. Here the users
share their location by checking-in to the social
networking website. Data set is available at [10]
. Rumour or fad spread in a social networking
website based on location is simulated using the
SIR model where the infection spread is the rumour
spread. The timings are compared in the Table II
and in the fig 3.

C. Who-Trust-Whom Network

The network in soc-Epinions1.txt is a directed
graph that represents who-trust-whom relationship
in a social networking site of consumer review site
named Epinions.com. While running the SIR model
on this network we assume that if a user trusts
another user then there exists an edge between
them. Hence SIR can simulate the spread about
a news among the user network. This data set is

TABLE III
TIMINGS IN SECS FOR 200 SIMULATIONS OF SOC-EPINIONS

p p=0.2 p=0.5 p=0.8
q CUDA GPU OPT CUDA GPU OPT CUDA GPU OPT

0.1 16.5 8.79 11.87 6.73 10.73 5.48
0.2 11.04 5.47 7.49 4.38 6.22 3.74
0.3 8.95 4.20 6.04 3.42 4.92 3.00
0.4 7.15 3.43 5.17 2.90 4.24 2.63
0.5 5.74 2.94 4.55 2.58 3.73 2.40
0.6 5.36 2.60 4.31 2.34 3.38 2.25
0.7 4.44 2.34 4.10 2.16 3.22 2.14
0.8 3.76 2.14 3.78 2.01 2.98 2.09
0.9 3.30 1.99 3.63 1.90 2.95 2.03
1.0 2.93 1.87 3.16 1.82 2.81 1.99

TABLE IV
TIMINGS IN SECS FOR 200 SIMULATIONS OF EMAIL-ENRON

p p=0.2 p=0.5 p=0.8
q CUDA GPU OPT CUDA GPU OPT CUDA GPU OPT

0.1 6.43 5.37 6.28 4.31 6.11 3.42
0.2 3.53 2.42 3.58 2.70 3.56 2.50
0.3 2.25 1.73 2.78 2.07 2.75 2.02
0.4 1.45 1.10 2.03 1.60 2.33 1.79
0.5 1.41 0.88 1.81 1.43 1.93 1.56
0.6 1.07 0.61 1.58 1.19 1.74 1.43
0.7 1.10 0.58 1.43 0.90 1.55 1.35
0.8 0.68 0.41 1.09 0.86 1.41 1.22
0.9 0.71 0.39 0.99 0.75 1.37 1.11
1.0 0.55 0.28 1.03 0.76 1.23 1.13

available at [11]. The timings are compared in the
Table III and in the fig 4.

D. Email Network

Data set in email-Enron.txt represent a
communication via email within a dataset of
half a million of emails made publicly available
during an investigation by the Federal Energy
Regulatory Commission. In this network an edge
exists between two email addresses if there was
at least one mail exchanged between them. SIR
model simulates the possible way that information
can propagate in such a network. Data set available
at [12] . The timings are compared in the Table IV
and in the fig 5.

IV. CONCLUSION AND FUTURE WORK

In this paper we present a GPU based imple-
mentation of SIR model and compare its perfor-
mance with respect to CUDA SIR. We also checked



Fig. 5. Timing Plot for email-Enron.txt

the performance on varied network data sets and
hence showing the possibility of SIR model appli-
cation onto various domains. We have shown that
GPU OPT performs 1.8x-3.9x faster than CUDA
SIR and effectively about 30x faster when compared
to FastSIR on an average case. As a future work, we
would like to implement the SIR on multiple GPUs
with more efficient parallel random generators and
graph traversal techniques. Also, study on dynamic
networks with interventions would be an interesting
work that simulates the network more realistically
but at the cost of higher complexity in computation.

ACKNOWLEDGMENT

Special thanks to Mr. Nino Antulov-Fantulin of
Division of Electronics, Laboratory for Information
Systems, Rudjer Boskovic Institute, Zagreb, Croatia
for helping in understanding some of the concepts of
the SIR model proposed in the paper [2]. This work
was partially supported by a Nvidia grant under
Professor partnership program, a Defence Research
and Development Organization (DRDO) grant under
Extramural Research and Intellectual Property rights
and the Extreme Science and Engineering Discov-
ery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-
1053575.

REFERENCES

[1] Matija Sosic, Mile Sikic, CUDA implementation of the algorithm
for simulating the epidemic spreading over large networks.
MIPRO, 2012 Proceedings of the 35th International Convention.

[2] Nino Antulov-Fantulin, Alen Lancic, Mile Sikic, FastSIR
Algorithm: A Fast Algorithm for simulation of epidemic
spread in large networks by using SIR compartment model,
arXiv:1202.1639v1[cs.DS], 2012.

[3] G. K.R. Bisset, J. Chen, X. Feng, V.A. Kumar,M.V.Marathe,
Epifast: a fast algorithm for large scale realistic epidemic sim-
ulations on distributed memory systems, in: Proceedings of the
23rd international conference on Supercomputing, ICS 09, ACM,
New York, NY, USA, 2009, pp. 430439.

[4] C.L. Barrett, K.R. Bisset, S.G. Eubank, X. Feng, M.V. Marathe,
EpiSimdemics: an efficient algorithm for simulating the spread
of infectious disease over large realistic social networks, in: Pro-
ceedings of the 2008 ACM/IEEE conference on Supercomputing,
SC 08, IEEE Press, Piscataway, NJ, USA, 2008.

[5] Chris J. Kuhlman, V. S. Anil Kumar, Madhav V. Marathe,
Henning S. Mortveit, Samarth Swarup, Gaurav Tuli, S.
S. Ravi, Daniel J. Rosenkrantz, A GENERAL-PURPOSE
GRAPH DYNAMICAL SYSTEM MODELING FRAME-
WORK, in:Proceedings of the 2011 Winter Simulation Confer-
ence.

[6] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, Kunle Oluko-
tun, Accelerating CUDA Graph Algorithms at Maximum Warp,
2011.

[7] NVIDIA CUDA C Programming Guide, version 4.2
[8] Stanford large network dataset collection,

http://snap.stanford.edu/data/index.html, 2012.
[9] http://snap.stanford.edu/data/ca-CondMat.html, 2012.
[10] http://snap.stanford.edu/data/loc-gowalla.html, 2012.
[11] http://snap.stanford.edu/data/soc-Epinions1.html, 2012.
[12] http://snap.stanford.edu/data/email-Enron.html, 2012.


